Making and Breaking Supramolecular Synthons for Modular Protein Frameworks.
Mockler, N., Raston, C., Crowley, P.B.(2025) Chemistry : e202500732-e202500732
- PubMed: 40178192 
- DOI: https://doi.org/10.1002/chem.202500732
- Primary Citation of Related Structures:  
9HBD, 9HBE, 9HBF, 9HBG - PubMed Abstract: 
Anionic calixarenes are useful mediators of protein assembly. In some cases, protein - calixarene cocrystallization yields multiple polymorphs. Ralstonia solanacearum lectin (RSL) cocrystallizes with p-sulfonato-calix[8]arene (sclx8) in at least four distinct pH-dependent arrangements. One of these polymorphs, occurring at pH ≤4, is a cubic framework in which RSL nodes are connected by sclx8 dimers. These dimers are supramolecular synthons, occurring in distinct crystal structures. Now, we show that the discus-shaped dimer of p-phosphonato-calix[6]arene (pclx6), can replace the sclx8 dimer yielding a new assembly of RSL. Remarkably, just one type of RSL - pclx6 cocrystal was formed, irrespective of pH or crystallization condition. These results with pclx6 contrast starkly with sclx8 and suggest that the calixarene type (e.g. phosphonate versus sulfonate) dictates the synthon durability, which in turn exerts control over protein assembly and polymorph selection. Breaking the pclx6 dimer required a mutant of RSL with an affinity tag for macrocycle binding. This highly accessible, dicationic site resulted in a significantly altered and porous framework with pclx6 (but not with sclx8). Experiments with ternary mixtures of RSL, pclx6 and sclx8 provide evidence of pH-driven self-sorting. Thus, the 'mix-and-match' of protein and supramolecular synthons is a promising approach to protein crystal engineering.
Organizational Affiliation: 
University of Galway, School of Biological & Chemical Sciences, IRELAND.